Quantum Sensors and High Energy Physics

Surjeet Rajendran, UC Berkeley

Grand Challenge of High Energy Physics

Standard Model experimentally established

Grand Challenge of High Energy Physics

Standard Model experimentally established

We know there is new physics out there

Matter?

Dark Matter

Hierarchy

Dark Energy

Grand Challenge of High Energy Physics

Standard Model experimentally established

We know there is new physics out there

Matter?

Dark Matter

Hierarchy

Dark Energy

Where is this new physics?

Mass? Interactions?

High Luminosity Machines

Remarkable Evolution!

Light,

 \ll weak

High Energy Accelerators

High Luminosity Machines

Remarkable Evolution!

High Energy Accelerators

High Luminosity Machines

Remarkable Evolution!

High Intensity or Cosmic Production

Light,

 \ll weak

Detection?
Quantum Sensors!

Dark matter may be hint of ultra-light sector - axions, hidden photons make great dark matter candidates

Dark matter may be hint of ultra-light sector - axions, hidden photons make great dark matter candidates

Recent Theory Connection: Cosmological Relaxation of the Electroweak Scale

Symmetry based theories for hierarchy problem strongly constrained by LHC. Doesn't work for dark energy

Dark matter may be hint of ultra-light sector - axions, hidden photons make great dark matter candidates

Recent Theory Connection: Cosmological Relaxation of the Electroweak Scale

Symmetry based theories for hierarchy problem strongly constrained by LHC. Doesn't work for dark energy

What if the universe was very old?

Dark matter may be hint of ultra-light sector - axions, hidden photons make great dark matter candidates

Recent Theory Connection: Cosmological Relaxation of the Electroweak Scale

Symmetry based theories for hierarchy problem strongly constrained by LHC. Doesn't work for dark energy

What if the universe was very old?

Slow processes (like erosion) can tune. Ultra-light particles!

Fit in galaxy

Fit in galaxy

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs)

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs)

Other Generic Candidates: Axions, Massive Vector Bosons, etc... (includes independently motivated QCD axion, relaxion)

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs)

Other Generic Candidates: Axions, Massive Vector Bosons, etc... (includes independently motivated QCD axion, relaxion)

How do we search for them?

Fancy Detector: Quantum Sensor

Fancy Detector: Quantum Sensor

What kinds of effects can we look for?

Study a/c effects of dark matter on electrons, nucleons and photons

Study a/c effects of dark matter on electrons, nucleons and photons (e.g. axion)

SQUID Sensor

Magnetic Field
$$\lesssim 10^{-16} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}} \;\; \cos{\left(m_a t\right)}$$

Study a/c effects of dark matter on electrons, nucleons and photons

Magnetic Field
$$\lesssim 10^{-16} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}} \; \cos{\left(m_a t\right)}$$

Study a/c effects of dark matter on electrons, nucleons and photons

SQUID Sensor (neutrino masses?) Magnetic Field
$$\lesssim 10^{-16} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}} \; \cos{(m_a t)}$$

Study a/c effects of dark matter on electrons, nucleons and photons

SQUID Sensor (neutrino masses?)

Magnetic Field
$$\lesssim 10^{-16} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}} \; \cos{\left(m_a t\right)}$$

Direct force on atoms, measure acceleration

Accelerations
$$\lesssim 10^{-13} \frac{\text{g}}{\sqrt{\text{Hz}}} \cos(m_a t)$$

Study a/c effects of dark matter on electrons, nucleons and photons

SQUID Sensor (neutrino masses?)

Magnetic Field
$$\lesssim 10^{-16} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}} \; \cos{\left(m_a t\right)}$$

Direct force on atoms, measure acceleration

Accelerations
$$\lesssim 10^{-13} \frac{\text{g}}{\sqrt{\text{Hz}}} \cos(m_a t)$$

Sensitivity scales with size (volume, time...)

Precision Instruments

Impressive developments in the past two decades

Magnetic Field
$$\lesssim 10^{-16} \frac{T}{\sqrt{\text{Hz}}}$$

(SQUIDs, atomic magnetometers)

$$\begin{array}{ll} {\rm Accelerometers} & \lesssim 10^{-13} \frac{g}{\sqrt{\rm Hz}} \\ & \text{(atom and optical interferometers)} \end{array}$$

Precision Instruments

Impressive developments in the past two decades

$$\begin{array}{ll} {\rm Accelerometers} & \lesssim 10^{-13} \frac{\rm g}{\sqrt{\rm Hz}} \\ & \text{(atom and optical interferometers)} \end{array}$$

Base sensor capabilities exist to probe light, ultra weakly coupled physics relevant to dark matter, hierarchy problem etc.

Rapid technological advancements

Precision Instruments

Impressive developments in the past two decades

$$\begin{array}{ll} {\rm Accelerometers} & \lesssim 10^{-13} \frac{\rm g}{\sqrt{\rm Hz}} \\ & \text{(atom and optical interferometers)} \end{array}$$

Base sensor capabilities exist to probe light, ultra weakly coupled physics relevant to dark matter, hierarchy problem etc.

Rapid technological advancements

HEP Dream: Quantum limited macroscopic sensor

QIS Dream: Quantum limited macroscopic computer

The Precision Dream

